Alterações bioquímicas e fisiológicas relacionadas a matocompetição

Autores

  • Helis Salomão UTFPR/mestranda
  • Michelangelo Muzell Trezzi

Palavras-chave:

planta daninha, competição, estresse oxidativo, redução de produtividade

Resumo

A competição entre plantas daninhas e cultivadas ou matocompetição, é a forma de estresse biótico que causa maior redução de produtividade dos cultivos agrícolas mundiais. Ela se desenvolve através de um estresse misto, que provoca alterações morfológicas, fisiológicas e no metabolismo secundário das plantas, que causam um alto gasto energético para a remediação de danos causados e consequente desvio de recursos que seriam destinados ao aumento da produtividade. As respostas da matocompetição sobre parâmetros morfológicos e de produtividade já são bem explorados na literatura. Entretanto, poucas informações são encontradas a respeito das influências da matocompetição em parâmetros bioquímicos e fisiológicos das plantas envolvidas, principalmente em alterações no metabolismo secundário. A revisão teve como objetivo, demonstrar as alterações conhecidas provocadas pela presença de plantas daninhas em competição, sobre parâmetros bioquímicos, fisiológicos e no metabolismo secundário das plantas de interesse agrícola. A matocompetição proporciona uma vasta rede de alterações metabólicas nas plantas envolvidas, especialmente para a planta cultivada. Muitas dessas alterações ainda são pouco estudadas e requerem um maior nível de detalhamento, necessitando maior número de pesquisa nessa área. Alterações bioquímicas e no metabolismo secundário também merecem um melhor detalhamento, com uma maior base de referências principalmente quanto as diferentes espécies de plantas daninhas e plantas cultivadas.

Referências

AFIFI, M., SWANTON, C. Early Physiological Mechanisms of Weed Competition. Weed Science, 60(04), 542–551, 2012. 10.1614/ws-d-12-00013.1

AGOSTINETTO D. et al. Change in physiological features in ryegrass biotypes in competition with soybean due resistance to glyphosate. Planta Daninha. 2016; 34:517–526. 10.1590/s0100-83582016340300012.

AGOSTINETTO D. et al. Metabolic activity of wheat and ryegrass plants in competition. Planta Daninha. 2017; 35:e017155463. 10.1590/s0100-83582017350100044

BARROS R.E. et al. Physiological response of eucalyptus species grown in soil treated with Auxin-Mimetic herbicides. Planta Daninha; 32:629-38, 2014.

BARROS R.E. et al. Physiological response of eucalyptus species grown in soil treated with Auxin-Mimetic herbicides. Planta Daninha. 32:629-38, 2014.

BHATT, I.; TRIPATHI, B.N. Plant peroxiredoxins: catalytic mechanisms, functional significance and future perspectives. Biotechnology Advances, v. 29, p. 850-859, 2011

BLOKHINA, O. et al. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, v. 91, p. 179-194, 2003.

BORELLA, J. et al. Estresse em plantas pela aplicação de herbicidas. DOI 10.22533/at.ed.0851918061. In: SANTAS, C.A.; RIBEIRO, J.C. Desafios e sustentabilidade no manejo de plantas. Ponta Grossa: Atena Editora, 2019.

BRIGHT, J. et al. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. The Plant Journal, v. 45, p. 113-122, 2006.

CARVALHO M.H.C. Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signaling and Behavior, v. 3, p. 156-165, 2008.

CAVERZAN, A. et al. Defenses against ROS in crops and weeds: The effects of interference and herbicides. J. Mol. Sci, v. 20, n. 1086, 2019.

CAVERZAN, A. et al. Reactive Oxygen Species and Antioxidant Enzymes Involved in Plant Tolerance to Stress. In: SHANKER, A. K.; SHANKER, C. (Ed.) Abiotic and Biotic Stress in Plants – Recent Advances and Future Perspectives, 2016.

CHEN, C.T. et al. Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Science, v. 160, p. 283-290, 2001.

COCHARD, H. et al. Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. Plant Physiology, v.128, p.282-290, 2002. http://dx.doi.org/10.1104/pp.010400

CONCENÇO, G. et al. Uso da água em biótipos de azevém (Lolium multiflorum) em condição de competição. Planta Daninha, v.25, p.449-455, 2007

COOLEY, W.E.; FOY, C.L. Effects of SC-0224 and glyphosate on free amino acids, soluble protein, and protein synthesis in inflated duckweed (Lemna gibba). Weed Science, v. 40, p. 345-350, 1992.

DARMANTI, S. et al. Purple Nutsedge (Cyperus rotundus L.) Interference and Drought Effect on Proline Accumulation in Soybean (Glycine max L.) Leaves. Advanced Science Letters, v. 23, n. 7, p. 6487-6489(3), 2017. https://doi.org/10.1166/asl.2017.9661

DA-YONG, L. et al. Comparison of net photosynthetic rate in leaves of soybean with different yield levels. J North Agric Univ, v. 19, p.14-19, 2012.

DEVINE, M. et al. Physiology of herbicide action. New Jersey: PTR Prentice Hall, 441p, 1993.

DUBEY, R.S. Metal toxicity, oxidative stress and antioxidative defense system in plants. In: GUPTA, S.D. Reactive oxygen species and antioxidants in higher plants. Enfield: Science Publishers, p. 178-203, 2011.

FAHEY, A. L. et al. Comparison of Leaf Water Potential, Stomatal Conductance, and Chlorophyll Fluorescence between an Invasive Weed, Schinus molle, and a native Chaparral Shrub, Ceanothus spinosus, in the Santa Monica Mountains. In: Research and Scholarly Achievement Symposium. Malibu, EUA, 2017

FREITAS, C.D.M. et al. Gaseous exchanges of corn and weeds under competition and water regimes. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v.24, n.7, p.465-473, 2020. http://dx.doi.org/10.1590/1807-1929/agriambi.v24n7p465-473

FUFEZAN, C. et al. Singlet oxygen production in herbicide-treated photosystem II. FEBS Letters, v. 532, p. 407-410, 2002

GAL J. et al. Detection of neighboring weeds alters soybean seedling roots and nodulation. Weed Sci;63:888–900, 2015. 10.1614/WS-D-15-00039.1

GALAL T.M., SHEHATA H.S. Impact of nutrients and heavy metals capture by weeds on the growth and production of rice (Oryza sativa L.) irrigated with different water sources. Ecol Indic, 54:108-15, 2015.

GILL, S.S.; TUTEJA, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, v. 48, p. 909-930, 2010

HAVAUX, M.; NIYOGI, K.K. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proceedings of the National Academy of Science USA, v. 96, p. 8762–8767, 1999.

HELDT, H. Plant biochemistry and molecular biology. New York: Oxford University Press, 1997. 522 p.

HUANG, Y. W. et al. Exogenous glucose regulates activities of antioxidant enzyme, soluble acid invertase and neutral invertase and alleviates dehydration stress of cucumber seedlings. Scientia Horticulturae, v. 162, p. 20–30, 2013.

JANUSKAITIENE, I. et al. Interspecific competition changes photosynthetic and oxidative stress response of barley and barnyard grass to elevated CO2 and temperature. Agricultural and Food Science, 27(1), 50–62, 2018. https://doi.org/10.23986/afsci.67840

LIU, T. et al. Canopy structure, light interception, and photosynthetic characteristics under different narrow-wide planting patterns in maize at silking stage. Spanish J Agric Res, 9:1249-61, 2011.

LOCATO, V. et al. Reactive oxygen species and ascorbateglutathione interplay in signaling and stress responses. In: GUPTA, S.D. Reactive oxygen species and antioxidants in higher plants. Enfield: Science Publishers, p.45-64, 2010.

MA, N.L. et al. A review of the “omics” approach to biomarkers of oxidative stress in Oryza sativa. International Journal of Molecular Sciences, v. 14, p. 7515-7541, 2013

MATYSIK, J. et al. Molecular mechanisms of quenching of reactive oxygen species by praline under stress in plants. Current Science, v. 82, p. 525-532, 2002

MESSINGER S.M. et al. Evidence for involvement of photosynthetic processes in the stomatal response to CO2. Plant Physiol, 140:771-8, 2006

METLEN, K.L; ASCHEHOUG, E.T.; CALLAWAY, R.M. Plant behavioural ecology: dynamic plasticity in secundar metabolites. Plant. Cell e environment, v.32, n.6, p.641-653, 2008.

MITTLER, R. et al. Reactive oxygen gene network of plants. Trends in Plant Science, v. 9, p. 490-498, 2004

MITTLER, R. Oxidative stress, antioxidants and stress tolerance. Plant Science, v. 7, p. 405-410, 2002

NOCTOR, G.; FOYER, C.H. A re-evaluation of the ATP: NADPH budget during C3 photosynthesis. A contribution from nitrate assimilation and its associated respiratory activity? Journal of Experimental Botany, v. 49, p. 1895-1908, 1998

PATEL; D. P.; ANUP Das; MUNDA, G. C. Physiological Efficiency of some Weeds Species under Hill Farming Systems of Subtropical Meghalaya. In: International Glassland Congresse, Track 2-2-1: plant diseases, insect pests and weed management. New Delhi, Índia, 2020.

PENG, C.L. et al. Response to high temperature in flag leaves of super high-yielding rice Pei’ai 64S/E32 and Liangyoupeijiu. Rice Science, v. 12, p. 179-186, 2005

PIASECKI C. et al. Does the interference of GR® volunteer corn alter stress metabolism on soybean? Planta Daninha. 2018a; 36:e018171955. 10.1590/s0100-83582018360100018.

PIASECKI C. et al. Interference of volunteer corn on stress metabolism and yield of dry bean. Planta Daninha. 2018b; 36:e018176669. 10.1590/s0100-83582018360100112

RADOSEVICH S.R., HOLT J.S., GHERSA C.M. Ecology of Weeds and Invasive Plants: Relationship to Agriculture and Natural Resource Management. 3rd ed. John Wiley, Sons; Hoboken, NJ, USA: 2007.

ROCKENBACH, A.P. et al. Do Weeds From Seeds or Regrowth in Coexistence Periods Alter Biochemical and Yield Characteristics of Soybeans? Journal of Agricultural Science; v. 11, n. 10; 2019. https://doi.org/10.5539/jas.v11n10p264

ROCKENBACH, A.P. et al. Interferência entre plantas daninhas e a cultura: alterações no metabolismo secundário. Revista Brasileira de Herbicidas, v.17, n.1, p.59-70, 2018.

SALOMÃO, H.M. Eficácia de herbicidas no controle de Ipomoea grandifolia sob diferentes doses, horários de aplicação e condições hídricas do solo. Monografia (Trabalho de Conclusão de Curso) - Universidade Tecnológica Federal do Paraná. Pato Branco. UTFPR, 2019. 66 f.

SALOMÃO, H.M. et al. Herbicides and water conditions on Ipomoea grandifolia control and enzyme activity.Communications in plant science, v. 11, p. 30-38, 2021.

SHARMA, P. et al. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of botany, v. 2012, 2012.

SIGNORELLI, S. et al. Molecular mechanisms for the reaction between OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. The Journal of Physical Chemistry B, v. 118, p. 37-47, 2014.

SILVA, D.R.O. et al. Glyphosate-resistant hairy fleabane competition in RR® soybean. Bragantia, Campinas, v. 73, n. 4, p. 451-457. 2014. http://dx.doi.org/10.1590/1678-4499.0200.

STEWART D.W. et al. Canopy structure, light interception and photosynthesis in maize. Agron J. 95:1465-74, 2003.

SUCHORONCZEK, A. Qualidade pós-colheita e alterações bioquimicas de duas cultivares de batata submetidas a estresse térmico. 65 p. Dissertação (Mestrado) — Universidade Estadual do Centro-Oeste, Programa de Pós-Graduação em Agronomia, Guarapuava, 2016.

SYROS, T. et al. Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of Ebenus cretica L. Journal of Plant Physioly, v. 161, p. 69–77, 2004.

TAIS, Lincoln et al. Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre: Artmed, 2017. 858 p. ISBN 9788582713662

ULGUIM A.R. et al. Does competition between soybeans and Wild Poinsettia with low-level resistance or susceptibility to glyphosate affect physiology and secondary metabolism? Semina. 38:1133–1144, 2017. 10.5433/1679-0359.2017v38n3p1133

WANG, J. et al. Photosynthesis and physiology responses of paired near-isogenic lines in waxy maize (Zea mays L.) to nicosulfuron. Photosynthetica, 56, 1059–1068 (2018a). https://doi.org/10.1007/s11099-018-0816-6

WANG, J. et al. Photosynthesis and physiology responses of paired near-isogenic lines in waxy maize (Zea mays L.) to nicosulfuron. Photosynthetica 56 (4): 1059-1068, 2018b. DOI: 10.1007/s11099-018-0816-6

WANG, L. et al. Effects of intraspecific competition on growth and photosynthesis of Atriplex prostrate. Aquatic Botany, v.83, p.187-192, 2005. http://dx.doi.org/10.1016/j.aquabot.2005.06.005

XU, X.M. et al. Effect of weedy rice at different densities on photosynthetic characteristics and yield of cultivated rice. Photosynthetica, 56 (2): 520-526, 2018. 10.1007/s11099-017-0707-2

ZHONG, X.M. et al. Photosynthesis and chlorophyll fluorescence of infertile and fertile stalks of paired near-isogenic lines in maize (Zea mays L.) under shade conditions. – Photosynthetica, 52: 597-603, 2014.

Downloads

Publicado

21-06-2022

Como Citar

Salomão, H., & Trezzi, M. M. (2022). Alterações bioquímicas e fisiológicas relacionadas a matocompetição. Integra - Integra - Revista Científica Muldisciplinar Unimater. Recuperado de http://revista.unimater.edu.br/index.php/integra/article/view/8

Edição

Seção

Artigo de Revisão